RapidMiner(ラピッドマイナー)は機械学習プラットフォームです。データ可視化、データ加工、モデル作成、評価、運用までを一つのプラットフォームで行うことができます。KSKアナリティクスはRapidMinerの正規販売代理店です。

マテリアルMATERIALS

キーワード絞り込み:

PDF

RapidMinerで始める簡単データ分析

RapidMinerで始める簡単データ分析イメージ

RapidMiner をダウンロードしてみたもののどのように使えばよいか分からないという方に向けた、使い方の入門講座です。RapidMiner Studio の基本機能と特徴について、チュートリアルを通して学んでいただき、RapidMiner の操作に慣れていただけたらと思います。ぜひ、資料記載のリンクからサンプルデータをダウンロードいただき、実際に操作してみてください。

詳細はこちら

PDF

RapidMiner9.10リリース

RapidMiner9.10リリースイメージ

2021年8月に、RapidMinerの9.10がリリースされました。実際にお客様からご要望があったものが実装されております。主な変更点についてご紹介しておりますので、ぜひご参考にして頂ければと思います。

詳細はこちら

PDF

代表的な拡張機能の紹介 ーSensor LinkでPI Systemと連携ー

代表的な拡張機能の紹介 ーSensor LinkでPI Systemと連携ーイメージ

製造業で広く導入されているPI SystemとRapidMinerとの連携を簡単に素早く行うことができる拡張機能 “Sensor Link Extension” をご紹介します。さまざまなオペレータが収録されておりますので、PI Systemをお使いの製造業の方はぜひお試しください。

PI System:操業パフォーマンス管理に必要な情報(生産実績、品質情報、設備稼働率など)をリアルタイムに共有するシステム

詳細はこちら

PDF

RapidMiner 利用者評価

RapidMiner 利用者評価イメージ
データサイエンスのプラットフォームを選択する際に確認すべきことの1つである、RapidMiner利用者の口コミ情報をご紹介します。調査会社 Gartner社による調査結果と国内ユーザーからのRapidMinerに対する評価を整理しております。

詳細はこちら

PDF

利益重視の機械学習モデル評価方法〜化学メーカーを事例に〜

利益重視の機械学習モデル評価方法〜化学メーカーを事例に〜イメージ
機械学習モデルの有効性を評価するプロセスを、化学メーカーの事例を用いてご紹介します。データサイエンスの問題をコスト(円)に置き換え、状況を理解することで、最も良いビジネス上の意思決定を行うことができます。

詳細はこちら

PDF

【初心者向け】モデル評価指標 ー回帰編ー

【初心者向け】モデル評価指標 ー回帰編ーイメージ

機械学習モデルを評価する上で、目的に合わせた評価指標の選択する必要があります。
回帰モデルを評価する際に用いるPerformanceオペレータと代表的な評価指標をご紹介します。RapidMiner 初心者の方はぜひご覧ください。

詳細はこちら

PDF

代表的な拡張機能の紹介 ーOperator Toolboxー

代表的な拡張機能の紹介 ーOperator Toolboxーイメージ

マーケットプレイスでよくダウンロードされている拡張機能”Operator Toolbox”をご紹介します。
各オペレータにはチュートリアルが収録されており、使い方をお試しいただけます。目的に合わせて、ぜひご活用ください。
マーケットプレイスと拡張機能の利用方法はこちら▶︎

詳細はこちら

PDF

クラスター分析:知っておきたいこと

クラスター分析:知っておきたいことイメージ

クラスタリングは、教師なし学習の一種で共通の特徴を発見しグループ分けする手法です。ビジネスで幅広く用いられており、その代表的な使用例をご紹介します。また、RapidMiner Go を用いた基本的なクラスター分析を ワインのデータセットを使って実行しております。

詳細はこちら

PDF

チタン合金画像の分類問題

チタン合金画像の分類問題イメージ

近年、画像やテキストといった非構造データ使った分析も注目を集めており、RapidMinerで非構造データを扱いたいというご要望が増えてきています。
本資料では、チタン合金画像を使用し結晶状態の分類を実装いたします。ニューラルネットワークのレイヤの設定方法もご紹介しております。ぜひご覧ください。

詳細はこちら

PDF

DX戦略を加速させるキーポイント

DX戦略を加速させるキーポイントイメージ

データサイエンスは、競争力を高めるための最も重要な要素として急速に普及しています。調査結果からも今すぐデータサイエンスを活用した DX 戦略を着手する必要性が示唆されています。
競争力向上と投資の鍵は何か、企業の内部と外部の両方にプラスの影響を与える 包括的なデータサイエンスプラットフォームの必要性などについてご紹介します。DX推進の方やマネージャーの方にぜひご覧いただきたい内容になっています。

詳細はこちら

PDF

【初心者向け】モデル評価指標 ークラス分類編ー

【初心者向け】モデル評価指標 ークラス分類編ーイメージ

機械学習モデルの作成においてモデルの評価は重要です。
・Performance指標がたくさんあり迷ってしまう。
・Performanceオペレーターの種類が多くどれを使うか迷う。
といったお悩みを解決するために、評価指標をまとめました。今回は分類モデルの評価指標をご紹介します。RapidMiner 初心者の方はぜひご覧ください。

詳細はこちら

拡張機能イントロダクション ーMarketPlaceの活用ー

拡張機能イントロダクション ーMarketPlaceの活用ーイメージ

RapidMiner Studioの機能を最大限活用するための、マーケットプレイスと拡張機能の利用方法をご紹介します。
無料の拡張機能をインストールすることで、レコメンデーションなどより高度な分析ができます。さらに、オープンソースの統計分析ソフトRやプログラミング言語Pythonなどを呼び出して使うこともできます。(一部有償の拡張機能あり)
拡張機能を利用することで、目的に合ったRapidMinerにカスタマイズしさらにご活用いただけます。

詳細はこちら

RapidMiner vs KNIME

RapidMiner vs KNIMEイメージ
ビジュアルワークフロー型のデータ分析プラットフォーム
RapidMinerとKNIME(ナイム)について、提供しているサービスに焦点を当て比較しております。RapidMiner製品・サービスの特徴もまとめてご紹介しておりますので、ぜひご覧ください。

詳細はこちら

プラットフォーム セキュリティ

プラットフォーム セキュリティイメージ
データを最大限に活用するために、組織でデータを扱う安全なプロセスを確立する必要があります。本資料では、RapidMinerプラットフォームのセキュリティについてご紹介します。セキュリティインフラにより、コンプライアンスを気にする時間を減らし、データから実用的な知見を得る時間を増やすことができます。
組織でデータ分析を行い活用をされる方はぜひご覧ください。

詳細はこちら

PDF

自動化特徴量エンジニアリングの RapidMinerプロセスでの実装

自動化特徴量エンジニアリングの RapidMinerプロセスでの実装イメージ

機械学習モデルの出来はビジネスに大きな影響を与えており、モデルの改善策の一つとして「特徴量エンジニアリング」があります。しかし、データサイエンスや業務知識が必要とされ活用が難しいとされています。
本資料では、特徴量エンジニアリングを簡単に取り入れることができる”AutomaticFeatureEngineering”の使い方をご紹介いたします。ぜひご覧ください。
(”AutomaticFeatureEngineering”は有償オペレータとなっております。)

詳細はこちら

PDF

Python Transformerを利用したカーネル密度分布の作成

Python Transformerを利用したカーネル密度分布の作成イメージ

散布図はデータ間の関係性を視覚的に把握する際に役立ちますが、プロットされる点の数が多くなるほど把握しづらいという問題点があります。カーネル密度推定の手法を使うことで、データ全体の傾向をより読み取りやすくなります。
本資料では、Python Extensionを用いて、カーネル密度推定による可視化機能を実装いたします。下記からプロセスをダウンロード頂けますので、お手元のRapidMinerで再現頂けます。
https://ksk-anl.smktg.jp/public/file/document/download/1586

詳細はこちら

RapidMiner製品評価Q&Aシート

RapidMiner製品評価Q&Aシートイメージ

RapidMinerの製品仕様や機能面などの基本的な部分についての139個の質問に対する回答集です。データの読み込みや前処理において、どのような手法が利用できるか、このアルゴリズムはサポートされているか、など、ツールの導入検討をされる際に、気になる項目は多々あるかと思いますので、まずはこちらの資料をご一読いただき、記載されていない、あるいは読んでもなおご不明な点につきましては、弊社にご連絡いただけますと幸いです。

資料ダウンロードにつきましては、下記URLよりダウンロードお願い致します。

https://ksk-anl.smktg.jp/cc/0x1QT1W7

詳細はこちら

PDF

食品・飲料業界におけるデータ分析の使用例トップ6

食品・飲料業界におけるデータ分析の使用例トップ6イメージ

RapidMinerはドイツで始まっており、ドイツ政府などの公的な組織からの助成金プロジェクトとの関わりも深く、ドイツの名物であるビールとの関係性も非常に深くなっています。ビール醸造におけるデータ分析は同じ食品・飲料業界の方々は勿論、製造業の方々にとっても近しい話題が多くなっています。

本資料では、RapidMiner社がこれまでビール醸造会社とデータ分析を取り組んできた経験の中でもビジネスインパクトの高かった6つの事例をご紹介致します。こちらで紹介している事例と同じ課題・お悩みを抱えていらっしゃる方は、是非一度弊社へお問い合わせください。

詳細はこちら

PDF

RapidMinerとPython連携

RapidMinerとPython連携イメージ

RapidMinerのようなGUIの機械学習ツールは、PythonやRといったコーディングでの機械学習と対比されることが多いのですが、RapidMinerではPythonとの連携を積極的に推し進めています。何故なら、RapidMinerとPythonはそれぞれに一長一短があり、関係はライバルではなく、パートナーのようなものだからです。RapidMinerだけでは足りない部分をPythonが埋めてくれ、Pythonでは手の届かない部分をRapidMinerがカバーしています。

Ver9.9へのアップデートでRapidMinerとPythonの連携はさらに強固になりました。新しいExcute Pythonオペレーターと、Customオペレーターを使うことで、PythonユーザーとRapidMinerユーザーは同一環境でデータ分析を行うことが容易になります。

本資料では二つのオペレーターの使い方を細かく実例付きでご紹介いたしますので、RapidMinerユーザーだけでなく、Pythonユーザーの方も是非ご覧ください。

詳細はこちら

PDF

製造業におけるAlと機械学習技術のインパクト

製造業におけるAlと機械学習技術のインパクトイメージ

RapidMinerの共同創設者兼研究責任者であるRalf Klinkenberg氏に製造業での機械学習やAIの注目点や導入の課題、将来像を話していただいたインタビュー記事を日本語訳・追記しました。

製造業における機械学習やAIのトレンド、昨今の新型コロナによるパンデミックの影響など2021年現在の状況も踏まえてお話しいただいておりますので、まさに現在、機械学習やAIに携わろうとしている製造業の方にご覧頂きたい内容となっております。

詳細はこちら

PDF

【シリーズ連載】データを一から分析してみよう(Part1)

【シリーズ連載】データを一から分析してみよう(Part1)イメージ

これから機械学習やデータ分析を始めよう、という方々も多いかと思いますが、勉強はされていても実際に分析を始めてみると、なかなか思うようにいかないこともあるかと思います。特に自社や自部署の中で、先にされている方がおらず、ご自身が先駆けとならなければいけないような状況だと、何から始めればいいかもわからないことすらあるかもしれません。

本シリーズではKaggleで公開されているデータを使って、最初から最後までデータ分析をしていく過程を連載していきます。作業の中で起きるエラーやトラブル、そしてそれにどう対処したのかもご紹介していきたいと思いますので、これからデータ分析の扉を叩く方は、是非ご一緒に分析を進めて頂ければと思います。

資料内で使用しているファイルと一部プロセスを下記からダウンロード頂けますので、お手元のRapidMinerで再現頂けます。
https://ksk-anl.smktg.jp/public/file/document/download/1553

詳細はこちら

PDF

【マネージャー向け】組織の為のデータ分析アップスキル

【マネージャー向け】組織の為のデータ分析アップスキルイメージ

データ分析、機械学習において「アップスキル」という言葉やそれに近い言葉をお聞きになったことがある方は多いのではないでしょうか。しかし、このアップスキルに難航して、組織の中でのデータ分析や機械学習の活用に苦労されたり、挫折されたりされる例が珍しくありません。逆に言えば、組織でのアップスキルに成功されている企業の多くはデータ分析の導入においても成功を収めていると言えます。

また、アップスキルが誤解されていることも時折、見受けられます。アップスキルとは一時的なものではありませんし、特定の誰かだけがしなければいけないものではなく、関わる全ての人が持続的に行っていくものです。

本資料では、改めて正しいアップスキルについてご紹介し、組織においてなぜ重要なのかご説明しますので、データ分析や機械学習を組織の中に根付かせたいDX推進の方やマネージャーの方は、是非ご理解いただきたい内容となっております。

詳細はこちら

PDF

RapidMiner9.9リリース

RapidMiner9.9リリースイメージ

先般、RapidMinerの9.9がリリースされました。それに合わせてStudioやAI-Hubに関する変更点についてRapidMiner社のリリースノートを日本語訳致しました。RapidMinerのバージョンアップについて、ご不明なことがございましたら、こちらをご参考にして頂ければと思います。

詳細はこちら

PDF

RapidMinerとGrafanaの連携

RapidMinerとGrafanaの連携イメージ

RapidMiner AI-HubにはGrafanaが付属しており、RapidMinerと連携させることで、インタラクティブで動的なダッシュボードを簡単に作成することが出来ます。ダッシュボードによって、可視化が出来るだけでなく、リアルタイムモニタリング等にも活用でき、予測分析の効果や質の低下を防いだり、より効果を向上させたりといった活用が可能です。

本資料では、RapidMiner AI-HubとGrafanaの連携方法や、ダッシュボードの作成方法をご紹介しますので、既にAI-Hubを導入されている方や導入を検討している方は是非、ご覧ください。

詳細はこちら

PDF

RapidMiner CheatSheet モデル作成・検証編

RapidMiner CheatSheet モデル作成・検証編イメージ

RapidMiner Studioには2021年3月段階で1500を超えるオペレーターが収録されており、非常に多機能となっております。今回はモデル作成と検証で良く使われるオペレーターに絞って、CheatSheetにまとめましたので、是非こちらをより良いモデルの作成や確かな精度検証にお役立てください!

詳細はこちら

PDF

RapidMiner CheatSheet 前処理編

RapidMiner CheatSheet 前処理編イメージ

RapidMiner Studioには2021年3月段階で1500を超えるオペレーターが収録されており、非常に多機能となっております。今回はデータ前処理で良く使われるオペレーターに絞って、CheatSheetにまとめましたので、是非こちらをご覧になりながら、RapidMinerで前処理を実装してみてください!

詳細はこちら

PDF

RapidMiner Radoopでビックデータ分析

RapidMiner Radoopでビックデータ分析イメージ

ビックデータを使った分析を行おうとした時に、課題として挙がってきやすいこととして、コンピュータ性能の拡張や複数のコンピュータでの分散処理などがあります。金銭的にせよ時間的にせよ、どれもコストが掛かってしまいやすく、乗り越えられないままビッグデータ分析が暗礁に乗り上げてしまうこともあります。

RapidMiner Radoopなら、Apache Hadoop とSpark とHiveを使って、コード無しの分散型機械学習を簡単に実装出来ます。本記事ではそんなRapidMiner Radoopの概要についてご紹介しますので、ビッグデータ分析に興味がお有りの方は一度、ご覧ください。

詳細はこちら

PDF

【機械学習初心者向け】10の機械学習アルゴリズム

【機械学習初心者向け】10の機械学習アルゴリズムイメージ

機械学習と言うと、アルゴリズムのことを連想される方は多いのではないでしょうか。一方、機械学習アルゴリズムは様々な種類が用意されていて、初心者の方にとってはアルゴリズムそれぞれの違いや特徴について知ることも大変で、時間が掛かったり、時には挫折してしまったりすることもあります。

本記事では、そんな初心者の方が知っておくべき、機械学習アルゴリズムについて10個に絞ってご紹介いたします。機械学習をこれから始めたい、考えていきたい方はまずこちらを見て頂くことをオススメ致します。

詳細はこちら

PDF

機械学習モデルの説明性

機械学習モデルの説明性イメージ

Explainable AIという言葉が使われるようになってきましたように、ただ予測結果を手に入れるのではなく、その予測内容の理由やどの説明変数が精度に影響を与えているのかまで知ることが求められるようになっています。予測内容が理解できなければ、改善の方法も考えられませんので、当然のことと言えます。

しかし、一般に機械学習モデルの予測精度と説明可能性はトレードオフの関係になることが多く、説明可能性を高めようとすると、予測精度が落ちてしまうことが多々あり、どちらを取るべきか悩まれた方もいるかもしれません。

RapidMinerでは、その双方を得るべく新しい拡張機能(Extension)をリリースしました。本資料では説明可能性の低いモデルでも、解釈がしやすくなる”Interpretation”の使い方をご紹介します。資料内で使用しているデータ、プロセス、エクステンションのファイルを下記からダウンロード頂けますので、お手元のRapidMinerで再現頂けます。

https://ksk-anl.smktg.jp/cc/0x1QT1Gf

詳細はこちら

PDF

【機械学習初心者向け】教師あり学習VS教師なし学習

【機械学習初心者向け】教師あり学習VS教師なし学習イメージ

機械学習をこれから始めようという方にとっては、分析課題に対してどのようにアプローチしていくべきなのかすら、なかなか分からないこともあるのではないかと思います。

機械学習自体の初心者向けシリーズとして、今回は教師あり学習と教師なし学習の違いの紹介から、問題解決へのアプローチを考えていきます。

今後も機械学習初心者向けのコンテンツを順次公開致しますので、RapidMinerを使って機械学習に初挑戦する方は是非ご覧ください。

詳細はこちら

PDF

Deployment機能紹介

Deployment機能紹介イメージ

RapidMinerで良いモデルが出来上がりましたら、次はモデル運用を始めて、効果を上げていきたいところですが、一口に運用といっても簡単ではありません。より精度の高まるよう新たな処理やアルゴリズムを試したり、モデルが学習時と同じ精度を出せているか随時確認したりと、運用時の苦労は、作成の時とそう変わらないものがあるかもしれません。

しかし、RapidMiner Studio Enterpriseにはそんな運用を楽に実行できるDeployment機能があります。RapidMiner Studioだけで使うことが出来るのでローカル環境でも運用管理が可能です。モデルの状態や推移をグラフで簡単に確認出来る他、しきい値を超えた時にアラートを出すことも可能です。

本資料ではRapidMiner Studio EnterpriseでのDeployment機能の使い方を紹介します。

詳細はこちら

PDF

AutoModelのオートクリーニングを再現

AutoModelのオートクリーニングを再現イメージ

有償版機能のAutoModelとTurboPrepには自動で特徴量の内容を集計し、IDと思われるものや相関が高すぎるものといった、分析に悪影響を及ぼす可能性がある特徴量を見つけてくれる”Quality Measures”機能があります。非常に便利な機能ですので、有効に活用されている方も多いと思います。

今回はそんな”Quality Measures”機能をAutoModelやTurboPrep無しに、通常のプロセスに組み込む方法をご紹介します。AutoModelなどで使う時と違い、より自分好みに制御出来ますので、もっと使いこなしたい方は是非お試しください。

詳細はこちら

PDF

機械学習モデル構築時の Python とRapidMiner の⽐較

機械学習モデル構築時の Python とRapidMiner の⽐較イメージ

機械学習の目的は人間の手を介さずにコンピュータがデータから自動的にパターンを学習させることです。機械学習の構築方法は大まかに分けて、PythonやRといったプログラミング言語での構築と、GUI(グラフィカル ユーザー インターフェース)ツールでの構築との二つがあります。

本資料では実際にPythonとRapidMiner、それぞれで同じデータセットから機械学習モデルを作成してみることで、それぞれの違いについてご紹介します。これから機械学習を進めていこう、という時に、どちらを選ぶべきか考える際の参考として頂ければ幸いです。

詳細はこちら

PDF

RapidMiner 20 Tips

RapidMiner 20 Tipsイメージ

RapidMinerには作業を楽にする様々な機能がありますが、その多くはあまり知られていません。ここでは、便利なRapidMinerのTipsを20個紹介します。

今までドラッグ&ドロップしていたものが、クリック一つで済んだり、同じ作業を繰り返していたものがあっという間に終わったり、そんな裏技みたいな機能ばかりですので、是非ご活用ください。

詳細はこちら

PDF

PythonとRapidMinerのjupyternotebook統合

PythonとRapidMinerのjupyternotebook統合イメージ

機械学習はこれまでPythonやRといったプログラミング言語を利用することが主流となっており、GUIツールを使うことはそれに対抗するイメージで考えられていました。しかし、機械学習を業務に適用し、企業として活用するためには、それぞれどちらかだけでなくハイブリッドに利用していくことが有効な手段となります。

RapidMinerは、PythonやRを機械学習を共に進めていくツールと考え、これらによって作成されたモデルやスクリプトとの連携を強化しています。そのため、PythonやRでの機械学習に精通したデータサイエンティストと、ドメイン知識が豊富なエンジニアがRapidMinerを通じて連携してプロジェクトに参加することが可能になっています。

本資料では、RapidMinerとPython、Rの統合の概要について、紹介しております。

詳細はこちら

PDF

目的変数最適化へのアプローチ

目的変数最適化へのアプローチイメージ

予測モデルの作成は、次に何が起きようとしているのかを予測するのに役立ちます。適切な方法を用いれば、なぜそれが起きるのか原因を理解することもできる場合があります。

しかし、何が起こるのか、なぜ起こるのかだけでは、意思決定を行うには十分とは言えません。意思決定を行うためには、結果を変更するためにどのパラメーターをどれくらいにすれば所望の値に近づけるのかを知る必要があります。それを実現できるのがRapidMinerの最適化オペレーター(Prescriptive Optimizer)です。

本資料では、目的変数と制御可能な変数、制約がある変数を組み込んだモデルを作成し、最適化を実行します。資料内で使用しているデータと作成したプロセスのサンプルは下記URLよりダウンロード出来ます。

https://ksk-anl.smktg.jp/cc/0x1QT1Av

詳細はこちら

PDF

動画

現場を巻き込むものづくりデータサイエンスの進め方

現場を巻き込むものづくりデータサイエンスの進め方イメージ

データ分析は日本企業にも浸透し始めておりますが、一方で組織内での推進に課題やお悩みを抱えている企業も少なくありません。データ分析の効果的な活用には、組織体制自体を従来の形から見直す必要があります。

当社では、データ分析推進に適した組織として、CoE(Center of Excellence)モデルを推奨しております。データ分析担当部署や担当者だけでなく、現場も関わる形のデータ分析推進を行うことで、活用の拡大、効果の向上を図ることが出来ます。本動画及び資料ではCoEモデルの説明と進め方、そしてCoE推進に役立つデータ分析の総合プラットフォーム「RapidMiner」をご紹介します。

社内でのデータ分析の活用・推進にお困りの方は是非一度ご覧ください。

詳細はこちら

PDF

RapidMiner連携ソリューション

RapidMiner連携ソリューションイメージ

RapidMinerは分析業務を行う人にとってはノンプログラミングで使える非常に便利なツールです。画面もわかりやすいので様々な方にご評価いただき、導入が進んでおります。しかし、分析業務ではなく、現場業務を行う現場担当者にとってはそれでも画面が複雑、という意見も頂いておりました。

そこで現場運用のためのUI画面の開発をご提案いたします。現場の方がRapidMinerを意識することなく、分析担当者の方が作られた分析プロセスを実行することができるようにすることで、社内での機械学習、RapidMinerの推進・活用の足並みを揃え、効果を向上させることが可能です。

本資料では、画面イメージやシステム構成イメージをご紹介させて頂きます。

 

詳細はこちら

PDF

RapidMiner × デバイスゲートウェイ

RapidMiner × デバイスゲートウェイイメージ

RapidMinerで作成したモデルを製造現場で活用していくためには、PLCやDCS、その他計測装置など様々な現場機器にアクセスしデータを収集することが必要となります。

「デバイスゲートウェイ」はPLCなどの生産現場の稼働情報を取得し、IoTサービスへ橋渡しをするデータアクセスユニットです。ウェブブラウザから簡単な設定で150機種以上の現場機器にアクセスし、インダストリー4.0で推奨されているOPC UA通信とIoTやM2Mに最適なMQTT通信など、多彩な上位通信とデータ連携を行うことができます。

本資料では、RapidMiner Serverとデバイスゲートウェイの連携事例をご紹介させて頂きます。

 

詳細はこちら

PDF

【各業界向け】RapidMinerユースケース集

【各業界向け】RapidMinerユースケース集イメージ

全世界でご愛用いただいておりますRapidMinerが、どのような事案でどのような効果を生んでいるのか、今回は製造業以外の金融業界や医療業界、小売業など広範な業界の事例をご紹介いたします。

各業界ごとにまとまっておりますので、ご自身の業界をご覧いただくのは勿論のこと、他業界の事例もご覧いただきますと、ご活用のバリエーションが広がります。

それぞれの課題や方法、効果、問題の概要を端的にまとめておりますので、ご興味のある内容を一目で確認頂けます。

詳細はこちら

PDF

【製造業向け】RapidMinerユースケース集

【製造業向け】RapidMinerユースケース集イメージ

全世界でご愛用いただいておりますRapidMinerが、どのような事案でどのような効果を生んでいるのか、
今回は製造業における実際の事例を使ってご紹介いたします。

それぞれの課題や方法、効果、問題の概要を端的にまとめておりますので、
ご興味のある内容を一目で確認頂けます。

詳細はこちら

動画

RapidMiner Goイントロダクション

RapidMiner Goイントロダクションイメージ

新製品RapidMiner Goはダウンロード不要の100%Webブラウザで使用できるAutoMLツールです。

数分でモデルが作成でき、内容の可読性も高いため、機械学習の知識に明るくない方でも機械学習の結果をビジネスに生かすことが出来ます。ドメイン知識に詳しい方々自身の手でビジネスインパクトの大きい問題、そしてその効果を確認出来ますので、より大きなビジネスインパクトにつながります。RapidMiner Goは皆さまとデータサイエンティストを橋渡しして繋いでくれます。

今回はそんなRapidMiner Goのイントロダクションを動画にてご紹介いたします。製品情報ページからも詳細ご覧いただけますので、是非ご確認ください。

https://www.rapidminer.jp/rapidminer-go/

詳細はこちら

PDF

AutoModel実行のためのガイド

AutoModel実行のためのガイドイメージ

RapidMinerを使い始めたばかりの方でも、使い慣れた方でも、Auto Modelを使うことで機械学習の活用を一気に加速させることができます。Auto ModelはRapidMiner Studioの拡張機能で、モデルの構築と検証のプロセスを備わっています。何より優れているのは、AutoModelで作成した予測モデルを自分自身で修正することができる点です。運用(deployment)も容易にできます。

Auto Modelは、教師あり学習教師なし学習外れ値検出の3つの大きな問題に対応しております。

このガイドでは、RapidMinerのAutoModelについて説明を行なっております。チュートリアル形式でご自身で手を動かして頂きながらAutoModelを試して頂くことが可能です。

詳細はこちら

PDF

Matthew North チュートリアル

Matthew North チュートリアルイメージ

「Data Mining for the Masses, Third Edition」の著者であるMatthew North氏 に許可を得て、同書籍の翻訳と編集と公開を実施しております。
シリーズの中では豊富な事例が出てきますので、機械学習の活用シーンをイメージ頂けます。
今回は、まず実施して頂きたい「データの前処理編」をご紹介させて頂きます。

詳細はこちら

PDF

機械学習のプロジェクト成功のためのガイド

機械学習のプロジェクト成功のためのガイドイメージ

本資料は、「RapidMiner_Humans-Guide-ML」を⽇本語訳したものです。
著者はMartin Schmitz, PhD(RapidMiner社のデータサイエンスサービスの責任者)です。
本資料では、ビジネス上の問題に対する AI・ 機械学習ソリューションの理解、取り組み⽅法、運⽤を⽀援することを⽬的として、過去10年の間に開発してきたアプローチについて説明されています。
機械学習プロジェクトに関する最初の数時間の社内ディスカッションのガイドとして活⽤できるように作成されています。

詳細はこちら

PDF

RapidMiner チュートリアル 9.0対応

RapidMiner チュートリアル 9.0対応イメージ

RapidMinerをダウンロードした後、まず実施して頂きたいチュートリアルです。
今回ご紹介させて頂きます本チュートリアルは最新版(Version9)に対応しております。
100ページありますが、初めての方はまず一通りやって頂くことをオススメ致します。

詳細はこちら

PDF

機械学習のための特徴量最適化

機械学習のための特徴量最適化イメージ

特徴量選択を実施することで、機械学習モデルを大幅に改善できます。
特徴量選択について 知っておくべきことをすべて概説しています。
なぜ特徴量選択が重要なのか、そして特徴量選択がなぜ難しい問題なのかを説明します。
また、特徴量選択を行うために使用されているさまざまなアプローチについて実例をもとに詳しく解説します。

詳細はこちら