RapidMiner(ラピッドマイナー)は機械学習プラットフォームです。データ可視化、データ加工、モデル作成、評価、運用までを一つのプラットフォームで行うことができます。KSKアナリティクスはRapidMinerの正規販売代理店です。

マテリアルMATERIALS

カテゴリ:
初級者
キーワード絞り込み:

RapidMiner製品評価Q&Aシート

RapidMiner製品評価Q&Aシートイメージ

RapidMinerの製品仕様や機能面などの基本的な部分についての139個の質問に対する回答集です。データの読み込みや前処理において、どのような手法が利用できるか、このアルゴリズムはサポートされているか、など、ツールの導入検討をされる際に、気になる項目は多々あるかと思いますので、まずはこちらの資料をご一読いただき、記載されていない、あるいは読んでもなおご不明な点につきましては、弊社にご連絡いただけますと幸いです。


資料ダウンロードにつきましては、下記URLよりダウンロードお願い致します。


https://ksk-anl.smktg.jp/cc/0x1QT1W7


詳細はこちら

PDF

食品・飲料業界におけるデータ分析の使用例トップ6

食品・飲料業界におけるデータ分析の使用例トップ6イメージ

RapidMinerはドイツで始まっており、ドイツ政府などの公的な組織からの助成金プロジェクトとの関わりも深く、ドイツの名物であるビールとの関係性も非常に深くなっています。ビール醸造におけるデータ分析は同じ食品・飲料業界の方々は勿論、製造業の方々にとっても近しい話題が多くなっています。


本資料では、RapidMiner社がこれまでビール醸造会社とデータ分析を取り組んできた経験の中でもビジネスインパクトの高かった6つの事例をご紹介致します。こちらで紹介している事例と同じ課題・お悩みを抱えていらっしゃる方は、是非一度弊社へお問い合わせください。


詳細はこちら

PDF

製造業におけるAlと機械学習技術のインパクト

製造業におけるAlと機械学習技術のインパクトイメージ

RapidMinerの共同創設者兼研究責任者であるRalf Klinkenberg氏に製造業での機械学習やAIの注目点や導入の課題、将来像を話していただいたインタビュー記事を日本語訳・追記しました。


製造業における機械学習やAIのトレンド、昨今の新型コロナによるパンデミックの影響など2021年現在の状況も踏まえてお話しいただいておりますので、まさに現在、機械学習やAIに携わろうとしている製造業の方にご覧頂きたい内容となっております。


詳細はこちら

PDF

【マネージャー向け】組織の為のデータ分析アップスキル

【マネージャー向け】組織の為のデータ分析アップスキルイメージ

データ分析、機械学習において「アップスキル」という言葉やそれに近い言葉をお聞きになったことがある方は多いのではないでしょうか。しかし、このアップスキルに難航して、組織の中でのデータ分析や機械学習の活用に苦労されたり、挫折されたりされる例が珍しくありません。逆に言えば、組織でのアップスキルに成功されている企業の多くはデータ分析の導入においても成功を収めていると言えます。


また、アップスキルが誤解されていることも時折、見受けられます。アップスキルとは一時的なものではありませんし、特定の誰かだけがしなければいけないものではなく、関わる全ての人が持続的に行っていくものです。


本資料では、改めて正しいアップスキルについてご紹介し、組織においてなぜ重要なのかご説明しますので、データ分析や機械学習を組織の中に根付かせたいDX推進の方やマネージャーの方は、是非ご理解いただきたい内容となっております。


詳細はこちら

PDF

RapidMiner9.9リリース

RapidMiner9.9リリースイメージ

先般、RapidMinerの9.9がリリースされました。それに合わせてStudioやAI-Hubに関する変更点についてRapidMiner社のリリースノートを日本語訳致しました。RapidMinerのバージョンアップについて、ご不明なことがございましたら、こちらをご参考にして頂ければと思います。


詳細はこちら

PDF

RapidMinerとGrafanaの連携

RapidMinerとGrafanaの連携イメージ

RapidMiner AI-HubにはGrafanaが付属しており、RapidMinerと連携させることで、インタラクティブで動的なダッシュボードを簡単に作成することが出来ます。ダッシュボードによって、可視化が出来るだけでなく、リアルタイムモニタリング等にも活用でき、予測分析の効果や質の低下を防いだり、より効果を向上させたりといった活用が可能です。


本資料では、RapidMiner AI-HubとGrafanaの連携方法や、ダッシュボードの作成方法をご紹介しますので、既にAI-Hubを導入されている方や導入を検討している方は是非、ご覧ください。


詳細はこちら

PDF

RapidMiner CheatSheet モデル作成・検証編

RapidMiner CheatSheet モデル作成・検証編イメージ

RapidMiner Studioには2021年3月段階で1500を超えるオペレーターが収録されており、非常に多機能となっております。今回はモデル作成と検証で良く使われるオペレーターに絞って、CheatSheetにまとめましたので、是非こちらをより良いモデルの作成や確かな精度検証にお役立てください!


詳細はこちら

PDF

RapidMiner CheatSheet 前処理編

RapidMiner CheatSheet 前処理編イメージ

RapidMiner Studioには2021年3月段階で1500を超えるオペレーターが収録されており、非常に多機能となっております。今回はデータ前処理で良く使われるオペレーターに絞って、CheatSheetにまとめましたので、是非こちらをご覧になりながら、RapidMinerで前処理を実装してみてください!


詳細はこちら

PDF

【機械学習初心者向け】10の機械学習アルゴリズム

【機械学習初心者向け】10の機械学習アルゴリズムイメージ

機械学習と言うと、アルゴリズムのことを連想される方は多いのではないでしょうか。一方、機械学習アルゴリズムは様々な種類が用意されていて、初心者の方にとってはアルゴリズムそれぞれの違いや特徴について知ることも大変で、時間が掛かったり、時には挫折してしまったりすることもあります。


本記事では、そんな初心者の方が知っておくべき、機械学習アルゴリズムについて10個に絞ってご紹介いたします。機械学習をこれから始めたい、考えていきたい方はまずこちらを見て頂くことをオススメ致します。


詳細はこちら

PDF

【機械学習初心者向け】教師あり学習VS教師なし学習

【機械学習初心者向け】教師あり学習VS教師なし学習イメージ

機械学習をこれから始めようという方にとっては、分析課題に対してどのようにアプローチしていくべきなのかすら、なかなか分からないこともあるのではないかと思います。


機械学習自体の初心者向けシリーズとして、今回は教師あり学習と教師なし学習の違いの紹介から、問題解決へのアプローチを考えていきます。


今後も機械学習初心者向けのコンテンツを順次公開致しますので、RapidMinerを使って機械学習に初挑戦する方は是非ご覧ください。


詳細はこちら

PDF

機械学習モデル構築時の Python とRapidMiner の⽐較

機械学習モデル構築時の Python とRapidMiner の⽐較イメージ

機械学習の目的は人間の手を介さずにコンピュータがデータから自動的にパターンを学習させることです。機械学習の構築方法は大まかに分けて、PythonやRといったプログラミング言語での構築と、GUI(グラフィカル ユーザー インターフェース)ツールでの構築との二つがあります。


本資料では実際にPythonとRapidMiner、それぞれで同じデータセットから機械学習モデルを作成してみることで、それぞれの違いについてご紹介します。これから機械学習を進めていこう、という時に、どちらを選ぶべきか考える際の参考として頂ければ幸いです。


詳細はこちら

PDF

RapidMiner 20 Tips

RapidMiner 20 Tipsイメージ

RapidMinerには作業を楽にする様々な機能がありますが、その多くはあまり知られていません。ここでは、便利なRapidMinerのTipsを20個紹介します。


今までドラッグ&ドロップしていたものが、クリック一つで済んだり、同じ作業を繰り返していたものがあっという間に終わったり、そんな裏技みたいな機能ばかりですので、是非ご活用ください。


詳細はこちら

PDF

PythonとRapidMinerのjupyternotebook統合

PythonとRapidMinerのjupyternotebook統合イメージ

機械学習はこれまでPythonやRといったプログラミング言語を利用することが主流となっており、GUIツールを使うことはそれに対抗するイメージで考えられていました。しかし、機械学習を業務に適用し、企業として活用するためには、それぞれどちらかだけでなくハイブリッドに利用していくことが有効な手段となります。


RapidMinerは、PythonやRを機械学習を共に進めていくツールと考え、これらによって作成されたモデルやスクリプトとの連携を強化しています。そのため、PythonやRでの機械学習に精通したデータサイエンティストと、ドメイン知識が豊富なエンジニアがRapidMinerを通じて連携してプロジェクトに参加することが可能になっています。


本資料では、RapidMinerとPython、Rの統合の概要について、紹介しております。


詳細はこちら

PDF

動画

現場を巻き込むものづくりデータサイエンスの進め方

現場を巻き込むものづくりデータサイエンスの進め方イメージ

データ分析は日本企業にも浸透し始めておりますが、一方で組織内での推進に課題やお悩みを抱えている企業も少なくありません。データ分析の効果的な活用には、組織体制自体を従来の形から見直す必要があります。


当社では、データ分析推進に適した組織として、CoE(Center of Excellence)モデルを推奨しております。データ分析担当部署や担当者だけでなく、現場も関わる形のデータ分析推進を行うことで、活用の拡大、効果の向上を図ることが出来ます。本動画及び資料ではCoEモデルの説明と進め方、そしてCoE推進に役立つデータ分析の総合プラットフォーム「RapidMiner」をご紹介します。


社内でのデータ分析の活用・推進にお困りの方は是非一度ご覧ください。


詳細はこちら

PDF

【各業界向け】RapidMinerユースケース集

【各業界向け】RapidMinerユースケース集イメージ

全世界でご愛用いただいておりますRapidMinerが、どのような事案でどのような効果を生んでいるのか、今回は製造業以外の金融業界や医療業界、小売業など広範な業界の事例をご紹介いたします。


各業界ごとにまとまっておりますので、ご自身の業界をご覧いただくのは勿論のこと、他業界の事例もご覧いただきますと、ご活用のバリエーションが広がります。


それぞれの課題や方法、効果、問題の概要を端的にまとめておりますので、ご興味のある内容を一目で確認頂けます。


詳細はこちら

PDF

【製造業向け】RapidMinerユースケース集

【製造業向け】RapidMinerユースケース集イメージ

全世界でご愛用いただいておりますRapidMinerが、どのような事案でどのような効果を生んでいるのか、

今回は製造業における実際の事例を使ってご紹介いたします。


それぞれの課題や方法、効果、問題の概要を端的にまとめておりますので、

ご興味のある内容を一目で確認頂けます。


詳細はこちら

動画

RapidMiner Goイントロダクション

RapidMiner Goイントロダクションイメージ

新製品RapidMiner Goはダウンロード不要の100%Webブラウザで使用できるAutoMLツールです。


数分でモデルが作成でき、内容の可読性も高いため、機械学習の知識に明るくない方でも機械学習の結果をビジネスに生かすことが出来ます。ドメイン知識に詳しい方々自身の手でビジネスインパクトの大きい問題、そしてその効果を確認出来ますので、より大きなビジネスインパクトにつながります。RapidMiner Goは皆さまとデータサイエンティストを橋渡しして繋いでくれます。


今回はそんなRapidMiner Goのイントロダクションを動画にてご紹介いたします。製品情報ページからも詳細ご覧いただけますので、是非ご確認ください。


https://www.rapidminer.jp/rapidminer-go/


詳細はこちら

PDF

AutoModel実行のためのガイド

AutoModel実行のためのガイドイメージ

RapidMinerを使い始めたばかりの方でも、使い慣れた方でも、Auto Modelを使うことで機械学習の活用を一気に加速させることができます。Auto ModelはRapidMiner Studioの拡張機能で、モデルの構築と検証のプロセスを備わっています。何より優れているのは、AutoModelで作成した予測モデルを自分自身で修正することができる点です。運用(deployment)も容易にできます。


Auto Modelは、教師あり学習教師なし学習外れ値検出の3つの大きな問題に対応しております。


このガイドでは、RapidMinerのAutoModelについて説明を行なっております。チュートリアル形式でご自身で手を動かして頂きながらAutoModelを試して頂くことが可能です。


詳細はこちら

PDF

Matthew North チュートリアル

Matthew North チュートリアルイメージ

「Data Mining for the Masses, Third Edition」の著者であるMatthew North氏 に許可を得て、同書籍の翻訳と編集と公開を実施しております。

シリーズの中では豊富な事例が出てきますので、機械学習の活用シーンをイメージ頂けます。

今回は、まず実施して頂きたい「データの前処理編」をご紹介させて頂きます。


詳細はこちら

PDF

RapidMiner チュートリアル 9.0対応

RapidMiner チュートリアル 9.0対応イメージ

RapidMinerをダウンロードした後、まず実施して頂きたいチュートリアルです。

今回ご紹介させて頂きます本チュートリアルは最新版(Version9)に対応しております。

100ページありますが、初めての方はまず一通りやって頂くことをオススメ致します。


詳細はこちら