RapidMinerには作業を楽にする様々な機能がありますが、その多くはあまり知られていません。ここでは、便利なRapidMinerのTipsを20個紹介します。
今までドラッグ&ドロップしていたものが、クリック一つで済んだり、同じ作業を繰り返していたものがあっという間に終わったり、そんな裏技みたいな機能ばかりですので、是非ご活用ください。
RapidMiner(ラピッドマイナー)は機械学習プラットフォームです。データ可視化、データ加工、モデル作成、評価、運用までを一つのプラットフォームで行うことができます。KSKアナリティクスはRapidMinerの正規販売代理店です。
RapidMinerには作業を楽にする様々な機能がありますが、その多くはあまり知られていません。ここでは、便利なRapidMinerのTipsを20個紹介します。
今までドラッグ&ドロップしていたものが、クリック一つで済んだり、同じ作業を繰り返していたものがあっという間に終わったり、そんな裏技みたいな機能ばかりですので、是非ご活用ください。
機械学習はこれまでPythonやRといったプログラミング言語を利用することが主流となっており、GUIツールを使うことはそれに対抗するイメージで考えられていました。しかし、機械学習を業務に適用し、企業として活用するためには、それぞれどちらかだけでなくハイブリッドに利用していくことが有効な手段となります。
RapidMinerは、PythonやRを機械学習を共に進めていくツールと考え、これらによって作成されたモデルやスクリプトとの連携を強化しています。そのため、PythonやRでの機械学習に精通したデータサイエンティストと、ドメイン知識が豊富なエンジニアがRapidMinerを通じて連携してプロジェクトに参加することが可能になっています。
本資料では、RapidMinerとPython、Rの統合の概要について、紹介しております。
動画
データ分析は日本企業にも浸透し始めておりますが、一方で組織内での推進に課題やお悩みを抱えている企業も少なくありません。データ分析の効果的な活用には、組織体制自体を従来の形から見直す必要があります。
当社では、データ分析推進に適した組織として、CoE(Center of Excellence)モデルを推奨しております。データ分析担当部署や担当者だけでなく、現場も関わる形のデータ分析推進を行うことで、活用の拡大、効果の向上を図ることが出来ます。本動画及び資料ではCoEモデルの説明と進め方、そしてCoE推進に役立つデータ分析の総合プラットフォーム「RapidMiner」をご紹介します。
社内でのデータ分析の活用・推進にお困りの方は是非一度ご覧ください。
全世界でご愛用いただいておりますRapidMinerが、どのような事案でどのような効果を生んでいるのか、今回は製造業以外の金融業界や医療業界、小売業など広範な業界の事例をご紹介いたします。
各業界ごとにまとまっておりますので、ご自身の業界をご覧いただくのは勿論のこと、他業界の事例もご覧いただきますと、ご活用のバリエーションが広がります。
それぞれの課題や方法、効果、問題の概要を端的にまとめておりますので、ご興味のある内容を一目で確認頂けます。
全世界でご愛用いただいておりますRapidMinerが、どのような事案でどのような効果を生んでいるのか、
今回は製造業における実際の事例を使ってご紹介いたします。
それぞれの課題や方法、効果、問題の概要を端的にまとめておりますので、
ご興味のある内容を一目で確認頂けます。
動画
新製品RapidMiner Goはダウンロード不要の100%Webブラウザで使用できるAutoMLツールです。
数分でモデルが作成でき、内容の可読性も高いため、機械学習の知識に明るくない方でも機械学習の結果をビジネスに生かすことが出来ます。ドメイン知識に詳しい方々自身の手でビジネスインパクトの大きい問題、そしてその効果を確認出来ますので、より大きなビジネスインパクトにつながります。RapidMiner Goは皆さまとデータサイエンティストを橋渡しして繋いでくれます。
今回はそんなRapidMiner Goのイントロダクションを動画にてご紹介いたします。製品情報ページからも詳細ご覧いただけますので、是非ご確認ください。
https://www.rapidminer.jp/rapidminer-go/
RapidMinerを使い始めたばかりの方でも、使い慣れた方でも、Auto Modelを使うことで機械学習の活用を一気に加速させることができます。Auto ModelはRapidMiner Studioの拡張機能で、モデルの構築と検証のプロセスを備わっています。何より優れているのは、AutoModelで作成した予測モデルを自分自身で修正することができる点です。運用(deployment)も容易にできます。
Auto Modelは、教師あり学習、教師なし学習、外れ値検出の3つの大きな問題に対応しております。
このガイドでは、RapidMinerのAutoModelについて説明を行なっております。チュートリアル形式でご自身で手を動かして頂きながらAutoModelを試して頂くことが可能です。
「Data Mining for the Masses, Third Edition」の著者であるMatthew North氏 に許可を得て、同書籍の翻訳と編集と公開を実施しております。
シリーズの中では豊富な事例が出てきますので、機械学習の活用シーンをイメージ頂けます。
今回は、まず実施して頂きたい「データの前処理編」をご紹介させて頂きます。
RapidMinerをダウンロードした後、まず実施して頂きたいチュートリアルです。
今回ご紹介させて頂きます本チュートリアルは最新版(Version9)に対応しております。
100ページありますが、初めての方はまず一通りやって頂くことをオススメ致します。