自動化特徴量エンジニアリングの RapidMinerプロセスでの実装

-AutomaticFeatureEngineering-

株式会社KSKアナリティクス

日本企業においてもデータ分析、機械学習を利用する機会が広がりつつあり、モデ ル開発・運用は容易になってきました。その結果、モデルの出来がビジネスに与え る影響も大きくなり、モデルの改善が課題となることも少なくありません。

その策の一つとして「特徴量エンジニアリング」が挙げられます。Kaggleなどの コンペでも特徴量エンジニアリングを活用する案は多数見受けられます。一方、特 徴量エンジニアリングはデータサイエンスだけでなく業務知識も必要とされること が多く、データ分析を始めたての方では活用が難しいことも多いです。

RapidMinerの"AutomaticFeatureEngineering"を使えば、簡単に特徴量エンジニアリングを取り入れることが出来ますので、是非お試しください。

※ "AutomaticFeatureEngineering"は有償オペレータとなっております。

AutomaticFeatureEngineeringオペレータ 特徴量生成と特徴量選択の双方、 あるいは特徴量選択のみでも実行可能です。 内部にアルゴリズムやPerformanceをセット にしたValidationオペレータをセットします。

パラメータ設定のbalance for accuracyから 複雑さと精度のバランスを調整することが出 来、多目的特徴量エンジニアリングにも対応 しています。

その他の詳細はヘルプ欄及びヘルプ欄のチュ ートリアルプロセスでご確認ください。

サンプルプロセス

RapidMinerの下記ディレクトリに収録されているサンプルプロセスを例に ご紹介します。

//Training Resources/Model/Optimize/Feature Selection/Checkerboard Automatic Feature Engineering Solution

プロセス内容説明①

Oデータ準備
まずこのサブプロセスではチェッカーボードデータ(1000行の二項分類問題)
を作成し(A)、
作成したデータを学習データと検証データとして、それぞれ80%、20%に分割します(B)。

分割したデータの内、上から出力されて いるトレーニングデータはMultiplyオペ レータによって二つに複製されてサブプ ロセス外に出力されています(C)。 サブプロセスの一番上のoutポートは AutoFeatureEngに接続されており、そ の他の二つはApplyFeatureSetに接続し ます。

プロセス内容説明2

〇特徴量エンジニアリング-1 パラメータ設定を行います。

modeは"feature selection and generation"とし、特徴量の生成と選択 を実行させます(A)。

balance for accuracyを今回は精度向上が第一目的にしているので、0.9としています(B)。ほかの問題の場合、精度と複雑性の兼ね合いを取るため、一般的には0.5程度の設定が良いと思われます。

popとoptポートは結果ポートに接続し、 feaポートはApplyFeartureSetに接続し ます。

プロセス内容説明③

〇特徴量エンジニアリング-2

AutoFeatureEngの内部には決定木を含んだ分割検証がセットされています。

特徴量の価値を見る為、数回の分割でモ デルへの影響力を測定できるよう、決定 木は最大深度を4とする単純な設定にな っています。

プロセス内容説明④

O特徴量エンジニアリングの確認-1 AutoFeatureEngにブレークポイントを設定し、途中実行すると、 複雑さと精度のトレードオフ関係を可視化したグラフが表示されます。 今回は精度を重視し、バランスを0.9にしたので下の円付近の値を探索します。

プロセス内容説明⑤

〇特徴量エンジニアリングの確認-2

試行のログとそのパフォーマンス、複雑性を 示す表(A)、パレートフロントに沿って良い結 果の出た5つのポイントのコレクション(B)、 最終的に選択された2つの特徴量(C)がそれぞ れ結果に表示されます。

CのExpressionではその特徴量がどのように生成されたのか、式を確認できます。 次はこの式を新規データに適用します。

Row No.	Generation	Min Error	Max Error	Min Comple	Max Comple
1	1	0.492	0.492	1	2
2	2	0.492	0.492	1	2
3	3	0.492	0.492	1	2
4	4	0.492	0.492	1	2
5	5	0.492	0.492	1	2
6	6	0.492	0.492	1	2
7	7	0.492	0.492	1	2
8	8	0.492	0.492	1	2
9	9	0.492	0.492	1	2
10	10	0.492	0.492	1	2
11	11	0.492	0.492	1	2
12	12	0.450	0.492	1	5
13	13	0.450	0.492	1	4
14	14	0.433	0.492	1	9
15	15	0.421	0.492	1	8

ExampleSet	(84行,0	特別属性,5	通常属性)
------------	--------	--------	-------

FeatureSetIOObject		Feature Set (fitness: 0.200; complexity: 5; original: no)		
FeatureSetIOObject	eature Set	Name	Expression	Complexity
FeatureSetIOObject		GenSym169	abs([att2]+[att1])	3
م FeatureSetIOObject		GenSym95	[att2]*[att1]	2

С

B

Name	Expression	Complexity
GenSym169	abs([att2]+[att1])	3
GenSym95	[att2]*[att1]	2

プロセス内容説明⑥

〇特徴量の適用

特徴量エンジニアリングで得られた特徴 量をMultiplyで複製し(A)、 それぞれ先ほど分割した学習データと検 証データに適用します(B)。

ApplyFeartureSetオペレータは AutoFeatureEngで得られた特徴量セットと新規データセットを接続すると、デ ータセットに特徴量セットと同じ構造・ 同じ式を当てはめることが出来ます。 結果を詳しく見たい場合はここにブレー クポイントを設置してご確認ください。

プロセス内容説明⑦

Oモデリング、検証

ここでは特徴量セットを適用した学習デ ータで再び決定木を使いモデリング、交 差検証を行い(A)、

そのモデルを検証データに適用し、精度 検証を行っています(B)。

再度、決定木を利用していますが、この 決定木は先ほどと異なり、最大深度10と する多少、複雑なモデルを作成します。

プロセス内容説明⑧

〇結果確認

最後に精度を確認しましょう。学習データでの交差検証の結果がA、検証データの結果がBです。Aではaccuracyが90.62%±3.55となっており、Bの結果がその範囲内に収まっていることが確認できます。

Α

accuracy: 90.62% +/- 3.55% (micro average: 90.62%)			
	true negative	true positive	class precision
pred. negative	386	55	87.53%
pred. positive	20	339	94.43%
class recall	95.07%	86.04%	
		7	^

Β

negative		
	true positive	class precision
	22	81.82%
	76	96.20%
16%	77.55%	
)	6%	22 76 6% 77.55%

今回は"AutomaticFeatureEngineering"オペレータを使った特徴量エンジニア リングをご紹介しました。このオペレータを活用いただければ、特徴量エンジニア リングを簡単に行うことが出来、モデルのさらなる向上に役立ちます。

更にRapidMiner Studioの有償版機能AutoModelにも自動特徴量エンジニアリ ング機能が付いております。こちらは今回ご紹介したプロセスよりも遥かに早く簡 単に特徴量エンジニアリングを実施することが出来ますので、AutoModelをご利 用中の方は是非、お試しください。

